Добавить в закладки : Регистрация : Вход : RSS
gornoprom.com Реклама
ОбъявленияКаталогPremiumВыставкиСтатьиФорумКонтактыРекламаКонтакты

Меню

РЕКЛАМА

Реклама

Добавить предприятие Разместить рекламу Добавить объявление


Топливо

Разновидности топлива.

Нефтяной кокс.

Твердая компонента, остающаяся после перегонки нефти, называется нефтяным коксом. Эта твердая масса обычно содержит от 5 до 20% летучих веществ, от 80 до 90% связанного углерода, около 1% золы и немного серы. Хотя нефтяной кокс находит применение в ряде отраслей промышленного производства (например, как сырье для изготовления угольных электродов и пигментов для красителей), он представляет большую ценность как источник тепла (имеет высокую теплотворную способность) и используется в больших количествах как асфальтовый гудрон.

Газоконденсаты.

Эти продукты состоят в основном из пропана и бутана, которые извлекаются из природного газа в отстойниках. Их получают также на нефтеперерабатывающих заводах, где они называются сжиженными очистными газами. Газы любого происхождения, обладающие высокой летучей способностью, легко преобразовать в жидкое состояние, повышая давление. Затем эти конденсаты можно транспортировать через трубопроводы и в железнодорожных и автоцистернах. Их можно хранить под землей в искусственных или естественных резервуарах или на поверхности земли в специальных резервуарах.

Торф.

Торф является продуктом отмирания и неполного распада остатков болотных растений под воздействием грибков и бактерий в условиях избыточного увлажнения и недостаточного доступа воздуха. Залежи торфа распространены по всему миру, и торф используют в качестве топлива там, где отсутствуют другие, более эффективные виды топлива (с более высокой теплотворной способностью).

Каменный уголь.

Каменный уголь представляет собой смесь углеродсодержащей массы, воды и некоторых минералов. Он образуется из торфа в результате длительного воздействия бактериологических и биохимических процессов. В превращении торфа в различные виды каменного угля большую роль играют температура и давление. Действие проточных вод приводит к появлению в пластах каменного угля большего или меньшего количества инородных минералов, которые перемешиваются с углеродсодержащей массой. Эта масса защищена от воздействия воздуха накрывающим ее пластом породы.

Существуют два способа разработки месторождений каменного угля. При разработке открытым способом пласт каменного угля очищается от слоя настилающей породы с помощью экскаваторов, которые используются затем для погрузки угля на транспортные средства. При разработке каменного угля подземным способом сооружается вертикальная шахта или горизонтальная выработка (штольня) в склоне горы, ведущие к пласту каменного угля. При этом каменный уголь извлекается из пласта посредством взрывной отбойки или с помощью механических рыхлителей и затем перегружается в вагонетки или на транспортеры.

СИНТЕТИЧЕСКИЕ ЖИДКИЕ ТОПЛИВА

Каждый вид ископаемого топлива органического происхождения, а именно каменный уголь, нефть или природный газ, может быть преобразован в другой посредством изменения относительного содержания углерода и водорода. Существуют два классических способа превращения каменного угля в жидкое топливо, разработанные в Германии. В процессе Бергиуса к каменному углю подводится газообразный водород, и при высоком давлении в присутствии катализатора происходит процесс гидрогенизации. В процессе Фишера – Тропша жидкое топливо получают с помощью каталитической реакции, в которой участвуют моноксид углерода и водород (синтезирующий газ), получаемые при первичной газификации нагретого до высокой температуры каменного угля под воздействием кислорода и водяного пара.

УГОЛЬ ИСКОПАЕМЫЙ, горючая осадочная порода органического (растительного) происхождения, состоящая из углерода, водорода, кислорода, азота и других второстепенных компонентов. Цвет варьирует от светло-коричневого до черного, блеск – от матового до яркого блестящего. Обычно четко выражена слоистость, или полосчатость, которая обусловливает его раскалывание на блоки или таблитчатые массы. Плотность угля от менее 1 до ~1,7 г/см3 в зависимости от степени изменения и уплотнения, которое он претерпел в процессе углеобразования, а также от содержания минеральных составляющих.


ПРОМЫШЛЕННАЯ ГАЗИФИКАЦИЯ

Первоначально газификация каменного угля использовалась для получения светильного газа. В настоящее время газификация всех видов природных топлив применяется не только для удовлетворения нужд коммунальной и промышленной теплоэнергетики, но и для получения ценного сырья, используемого при синтезе ряда химических продуктов.

Факторами, определяющими выбор сырья, подлежащего газификации, являются его доступность и стоимость процесса газификации. Используя в качестве источника углерода кокс, производимый из каменного угля, получают синтетический газ в виде смеси моноксида углерода с водородом, образующейся при реакции двуокиси углерода и водяного пара с углеродом раскаленного добела кокса. Можно производить генераторный газ из каменного угля в непрерывном процессе газификации, используя кислород и водяной пар. Синтетический газ можно производить также из природного газа, используя химическую реакцию между метаном и водяным паром или метаном и строго дозированным количеством кислорода. Обе эти реакции требуют присутствия соответствующих катализаторов.

ВЫСОКОЭНЕРГЕТИЧЕСКИЕ ХИМИЧЕСКИЕ ТОПЛИВА

Для самолетов, ракет и космических летательных аппаратов требуются специальные высокоэнергетические топлива. Существуют два основных типа двигателей для летательных аппаратов, используемых в авиации и космонавтике. Топливо для воздушно-реактивных двигателей, в которых в качестве окислителя используется кислород атмосферного воздуха, должно иметь высокую теплотворную способность (высокую удельную теплоту сгорания). Кроме того, такое топливо должно быть термически устойчивым. Для достижения наивысших технических показателей летательного аппарата такое топливо должно иметь также высокую плотность (чтобы в заданном ограниченном объеме можно было разместить большой запас топлива). Таким образом, в авиационной технике проблема состоит в нахождении топлива, которое характеризуется большой плотностью и высокой удельной теплотой сгорания. Для большей части топлив удельная теплота сгорания тем меньше, чем выше плотность. В настоящее время большинство реактивных двигателей работает на керосине или на бензине в качестве топлива. Однако ведутся исследования смесей специальных углеводородных соединений, которые обладали бы более высокой плотностью. Значительное внимание уделяется также поиску других видов топлив.

Второй класс двигателей, а именно ракетные двигатели, применяется на летательных аппаратах, движущихся большей частью в космосе, где нет кислорода. Следовательно, такой летательный аппарат должен нести не только горючее, но и окислитель. Эффективность ракетного топлива зависит не только от его удельной теплоты сгорания, и для оценки эффективности такого топлива используют параметр, называемый удельным импульсом (или удельной тягой), который определяется как отношение тяги двигателя к расходу топлива. С точки зрения теории, наибольший удельный импульс (около 400 с) должны обеспечивать жидкий водород в качестве горючего и жидкий фтор в качестве окислителя. Ракетные двигатели бывают жидкостные (ЖРД) и твердотопливные (РДТТ). Для ЖРД типичными комбинациями горючее/окислитель являются: керосин/жидкий кислород, гидразин/четырехокись азота, аммиак/азотная кислота и жидкий водород/жидкий кислород. Жидкостные ракетные двигатели использовались на большинстве крупных ракетно-космических систем. Например, в первой ступени ракеты-носителя «Сатурн-5», которая служила для доставки американского космического корабля «Аполлон» на Луну, в качестве топлива использовались керосин и жидкий кислород, а на второй и третьей ступенях – жидкие водород и кислород.

Твердое ракетное топливо содержит и горючее, и окислитель, соединенные вместе посредством связующего вещества, которое также может быть горючим. Твердые топлива уступают жидким по величине удельного импульса, однако находят широкое применение в боевых ракетах и неуправляемых реактивных снарядах вследствие низкой стоимости и удобства хранения таких топлив. Ракеты на твердом топливе имеют простую конструкцию, высокое начальное ускорение и отличаются высокой боеготовностью. Стратегические ракеты «Трайдент» и «Минитмен», а также множество более мелких ракет, используемых в системах вооружения летательных аппаратов, оборудованы двигателями на твердом топливе.

ЯДЕРНЫЕ ТОПЛИВА

В современных энергетических установках, основанных на принципе ядерного деления, в качестве топлива используется уран. Уран добывается из земных недр, где его доля составляет приблизительно 4Ч10–6. Урановая руда перерабатывается и обогащается; в топливе для атомного реактора концентрация изотопа урана с массовым числом 235 должна составлять 2–4%. Отработанное ядерное топливо можно переработать и снова получить некоторые расщепляемые материалы. Кроме того, на основе концепции реактора-размножителя (бридера) можно намного более эффективно использовать природный уран, преобразуя нерасщепляемый изотоп урана с массовым числом 238 в расщепляемый плутоний-239. В этом процессе и торий, присутствующий в природном ядерном топливе, также можно преобразовать в расщепляемый изотоп урана. В природе уран-235 встречается в незначительных количествах, так что нужды в ядерном топливе будут, по-видимому, удовлетворяться с помощью бридерных реакторов.

В противоположность урану, мировые запасы дейтерия (изотопа водорода с массовым числом, равным двум), который можно было бы использовать для получения энергии с помощью ядерного синтеза, фактически неограниченны. В одном кубическом метре морской воды содержится количество дейтерия, которого хватило бы для производства в управляемой термоядерной реакции такого количества энергии, которое выделяется при сжигании 200 т нефти.

Другое топливо для реакции ядерного синтеза – тритий – менее распространено в природе, но и оно могло бы заменить в энергетическом эквиваленте все мировые запасы топлив органического происхождения.

БУДУЩИЕ ПОТРЕБНОСТИ И ИСТОЧНИКИ ЭНЕРГИИ

В середине 20 в. люди начали понимать, что быстрое развитие промышленного производства и сопровождающий его быстрый рост спроса на энергию приведут в обозримом будущем к исчерпанию мировых запасов природных органических топлив. Во многих странах мира вследствие этого начали ускоренно осуществлять программы развития атомной энергетики для получения электрической энергии с помощью атомных реакторов. Истощение запасов органических топлив, рост спроса на электроэнергию и загрязнение окружающей среды, сопровождающее сжигание таких топлив, позволяют ожидать, что с течением времени вклад атомной энергетики будет возрастать. Однако и атомные электростанции могут оказывать вредное воздействие на окружающую среду. Мировая общественность встревожена авариями на атомных электростанциях и проблемой захоронения радиоактивных отходов. Следовательно, основным источником энергии, призванным заменить современные атомные электростанции, использующие цепную ядерную реакцию (реакцию ядерного деления), должны стать электростанции, использующие управляемую реакцию термоядерного синтеза.

В настоящее время ведутся исследования возможностей более широкого использования других природных источников энергии, которые в той или иной степени зависят от энергии солнечного света. Например, в некоторых районах мира для обогрева жилых и промышленных зданий используют солнечные батареи. Разрабатываются топливо- и энергосберегающие технологии. В различной степени продвинуты исследования возможностей практического использования энергии ветра, морских волн и приливов, геотермальных энергетических источников и энергии биомассы.
Просмотров: 2674 | Добавил: ukrcoalatua

Поиск

РЕКЛАМА


НОВОСТИ
Форма входа
Онлайн посетителей: 1
Незарегистрированных 1
Зарегистрированных 0


Зарегистрироваться
Счетчик тИЦ и PR
"Горнопромышленный портал Украины"